Anthraceno-Cryptands: A New Class of Cation-Complexing Macrobicyclic Fluorophores

Frédéric Fages,[†] Jean-Pierre Desvergne,^{*,†} Henri Bouas-Laurent,^{*,†} Pierre Marsau,[‡] Jean-Marie Lehn,*^{,§} Florence Kotzyba-Hibert,[§] Anne-Marie Albrecht-Gary,^{*,||} and Malak Al-Joubbeh[∥]

Contribution from the Laboratoire de Photochimie Organique, CNRS U.A. 348, 351 Cours de la Libération, 33405 Talence Cedex, France, Cristallographie et Physique Cristalline, CNRS U.A. 144, 351 Cours de la Libération, 33405 Talence Cedex, France, Chimie Organique Physique, CNRS U.A. 422, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France, and Chimie Physique et Electroanalyse, CNRS U.A. 405, EHICS, 67000 Strasbourg, France. Received April 24, 1989

Abstract: A new class of macrobicyclic and cation photosensitive compounds, the anthraceno-cryptands A_{nn} is described. In these ligands, the nitrogen lone pairs form intramolecular exciplexes with the anthracene ring, inducing a dual fluorescence emission (monomer type and exciplex) sensitive to the nature of the solvent. Thus, although A22 displays an intense triple exciplex emission in aprotic solvents, only a strong monomer-type emission is observed in methanol; this behavior is ascribed to hydrogen bonds between the solvent and the nitrogen lone pairs, which maintain an out-out conformation preventing exciplex formation. For A₃₃, the two nitrogens do not appear to be simultaneously involved in the solvation as a dual emission is recorded in methanol. Anthraceno-cryptands Ann present drastic changes in fluorescence emission upon complexation by alkali-metal cations and protons; the fluorescence spectrum displays a hypsochromic shift and the quantum yield is enhanced. Comparison with the reference molecules, i.e., the macrocyclic "crowned" molecules (M_n) and 9,10-di-*n*-propylanthracene (R), shows that the spectroscopic response is related (i) to the ability of the cation to suppress the nitrogen-anthracene interaction (ii) to the distance separating the aromatic π cloud and the cation. Unusual interactions between heavy-metal cations (Tl⁺ and Ag⁺) and anthracene have been revealed: a novel complex with Tl⁺ and an exciplex with Ag⁺ have been described. The stoichiometry and the stability constants of the complexes with protons and metal cations (Tl+ and Ag+) have been determined by spectrometric titrations.

A number of new compounds whose electronic absorption and emission spectra and photochemical reactivity are markedly affected by the presence of cations or, conversely, whose complexing ability can be significantly changed by photochemical reactions have been synthesized and investigated during the last decade.^{1a-q} This may lead to the conception of light-driven ionic molecular devices² that release or take up ionic species under irradiation; one may thus envisage the generation of reversible photoinduced ion pulses.

The fluorescence of aromatic hydrocarbons is most often quenched by inorganic salts,³ but moderate fluorescence enhancements have been observed with the macrocyclic polyethers dibenzo-18-crown-6 and 1,8-naphtho-21-crown-6 in the presence of alkali-metal cations.^{1c,e,f} Aromatic chromophores incorporated into ligands stronger than monocyclic ethers, such as cryptands, were expected to exhibit more pronounced photophysical responses in the presence of salt,^{1q} and some of us reported a preliminary study⁴ of two anthraceno-cryptands A_{nn} (n = 2, 3) (Scheme I) that combine the complexing ability of the cryptands⁵ and the photophysical properties of the anthracene ring,⁶ in particular an intense fluorescence emission; the latter can be quenched by formation of intramolecular exciplexes⁷ between the aromatic ring and the nitrogen lone pairs and restored by protonation or metal cation complexation by the [18]-N₂O₄ macrocyclic moiety of compounds A_{nn} . In parallel, anthracenoyl cryptands were used as fluorescence probes for membrane studies.8

Along these lines, strong fluorescence enhancements were observed with 9-anthrylmethyl-substituted monoazacrown ethers lj and with 9,10-(TMEDA)₂-substituted anthracenes.¹⁰ Important modifications of fluorescence emission with heterocycles linked to azacrown ethers have been noted.^{1m,n}

Another advantage of the anthraceno-cryptands is that they appear well suited to examination of the interaction of the nitrogen lone pairs with the aromatic ring in a given arrangement. Moreover, they were also designed to bring new insights into

^a The 1,10-diaza crown ether D is the complement to R.

oriented proximity interactions between metal cations and π systems. Similar molecules appeared recently,² which can be used

Chem. Leg. News 1987, 65, (Nov 9), 26.
(2) Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89.
(3) (a) McCullough, J. J.; Yeroushalmi, S. J. Chem. Soc., Chem. Commun. 1983, 254.
(b) Kitamura, N.; Imabagashi, S.; Tazuke, S. Chem. Lett.
1983, 455.
(c) Watkins, A. R. J. Phys. Chem. 1978, 78, 2555.

[†]Photochimie Organique.

[‡]Cristallographie et Physique Cristalline.

Chimie Organique Physique.

Chimie Physique et Electroanalyse.

^{(1) (}a) Löhr, H.-G.; Vögtle, F. Acc. Chem. Res. 1985, 18, 65. (b) Ogawa, S.; Narushina, R.; Arai, Y. J. Am. Chem. Soc. 1984, 106, 5760. (c) Larson,
 J. M.; Sousa, L. R. Ibid. 1978, 100, 1943. (d) Ghosh, S.; Petrin, M.; Maki,
 A. H.; Sousa, L. R. J. Chem. Phys. 1987, 87, 4315. (e) Shizuka, H.; Takada,
 K.; Morita, T. J. Phys. Chem. 1980, 84, 994. (f) Wolfbeiß, O. S.; Offen- K.; Morita, 1. J. Phys. Chem. 1980, 84, 994. (1) Wolfbeld, O. S.; Olfen-bacher, H. Monatsh. Chem. 1980, 115, 647. (g) Tundo, P.; Fendler, J. H. J. Am. Chem. Soc. 1980, 102, 1760. (h) Nishida, H.; Katsuayama, Y.; Katsudi, H.; Nakamura, H.; Takagi, M.; Ueno, K. Chem. Lett. 1982, 1853. (i) Shinkai, S.; Ishikawa, Y.; Shinkai, H.; Tsuno, T.; Makishima, H.; Ueda, K.; Manabe, O. J. Am. Chem. Soc. 1984, 106, 1801. (j) De Silva, A. P.; De Silva, S. A. J. Chem. Soc., Chem. Commun. 1986, 1709. (k) Street, K. W., Jr.; Krause, S. A. Ang. Lett. 1967. 10, 735. (J) RouseLaurent H.; Castellan A.; Daney. S. A. Anal. Lett. 1986, 19, 735. (1) Bouas-Laurent, H.; Castellan, A.; Daney, M.; Desvergne, J.-P.; Guinand, G.; Marsau, P.; Riffaud, M.-H. J. Am. Chem. M.; Desvergne, J.-P.; Guinand, G.; Marsad, P.; Killaud, M.-H. J. Am. Chem. Soc. 1986, 108, 315, and references therein. (m) Fery-Forgues, S.; Le Bris, M. T.; Guettë, J. P.; Valeur, B. J. Chem. Soc., Chem. Commun. 1988, 384.
 (n) Fery-Forgues, S.; Le Bris, M. T.; Guettë, J. P.; Valeur, B. J. Phys. Chem. 1988, 92, 6233. (o) Huston, M. E.; Haider, K. W.; Czarnik, A. W. J. Am. Chem. Soc. 1988, 110, 4460. (p) Adams, S. R.; Kao, J. P. Y.; Grynkiewicz, G.; Minta, A.; Tsien, R. Y. J. Am. Chem. Soc. 1988, 110, 3212. (q) Stinson, S. Chem. Eng. Neurosci 1987, 65. (Nov. 9), 26.

Scheme II. Synthesis of Anthraceno-cryptands A_{nn} (n = 2, 3; Ar = 9,10-anthrylidene)^a

^a(a) SOCl₂; (b) [18]-N₂O₄ macrocycle, Et₃N, benzene; (c) (i) B_2H_6/THF , (ii) 6 N, HCl, (iii) $Et_4N^+OH^-$.

as light conversion systems (in the presence of lanthanoid cations) or as light-to-electron conversion devices (in a zinc porphyrin macrotricyclic skeleton).

We report here the results obtained on compounds A_{nn} since the preliminary communication;⁴ some related work has been published separately.^{7,9} We describe the synthesis, the structure determination, and the complexing ability of the ligands and the photophysical study in the absence and the presence of protons as well as of light- and heavy-metal cations. To characterize the rigid bicyclic skeleton effect of A_{nn} , several flexible reference compounds were also synthesized and studied: 9,10-di-npropylanthracene (R), a monochromophoric model, 9,10-disubstituted anthracenes with a pendant [18]- N_2O_4 unit (M_n), and the N,N'-diethyl-[18]-N₂O₄ macrocycle (D) (Scheme I).

Results

Syntheses. (1) Cryptands A_{nn} . The generalized synthetic strategy for compounds Ann is outlined in Scheme II. It follows a route that allows introduction of the two different bridges n =2, n = 3 between the [18]-N₂O₄ unit and the anthracene ring.

The anthracenedicarboxylic acids 1_{nn} were prepared according to published procedures¹⁰ and subsequently transformed into the corresponding dichlorides 2_{nn} with thionyl chloride¹¹ (75% yield). High dilution condensation of 2_{nn} with the [18]-N₂O₄ macrocycle¹² affords the macrobicyclic diamides respectively 3_{22} (mp >260 °C; 61% yield) and 3_{33} (mp >260 °C; 65% yield). By reduction with diborane, the diamides give the anthraceno-cryptands as yellow solid materials A_{22} (mp >260 °C; 65% yield) and A_{33} (mp 215 °C; 77% yield).

(2) Reference Compounds. The preparation of 9,10-di-npropylanthracene (R) is described in the literature.¹³

The synthesis of the new compounds M_n (n = 2, 3) is outlined in Scheme III.

- (4) Konopelski, J. P.; Kotzyba-Hibert, F.; Lehn, J.-M.; Desvergne, J.-P.; Fages, F.: Castellan, A.; Bouas-Laurent, H. J. Chem. Soc., Chem. Commun. 1985, 433.
 - (5) Lehn, J.-M. Acc. Chem. Res. 1978, 11, 49.
- (6) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P. Pure Appl. Chem. 1980, 52, 2633
- (7) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H. J. Am. Chem. Soc. 1989, 111, 96.
- (8) Hermann, U.; Tümmler, B.; Maass, G.; Mew, P. K. T.; Vögtle, F.

(9) (a) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Hinschberger, J.;
Marsau, P.; Petraud, M. New J. Chem. 1988, 12, 95. (b) Guinand, G.;
Marsau, P.; Lehn, J.-M.; Kotzyba-Hibert, F.; Konopelski, J. P.; Desvergne, J.-P.; Fages, F.; Castellan, A.; Bouas-Laurent, H. Acta Crystallogr. 1986, C42,

N. H., Hages, F., Castehali, A., Bouas-Laurent, H. Acta Crystallogr. 1960, C42,
 (c) Marsau, P.; Bouas-Laurent, H.; Desvergne, J.-P.; Fages, F.; Lamotte,
 M.; Hinschberger, J. Mol. Cryst. Liq. Cryst. 1988, 156, 383.
 (10) Miller, M. W.; Amidon, R. W.; Tawney, P. O. J. Am. Chem. Soc.
 1955, 77, 2845.

(11) Rio, G. Ann. Chim. (Paris) 1954, 9, 182. (12) Dietrich, B.; Lehn, J.-M.; Sauvage, J.-P.; Blanzat, J. Tetrahedron 1973, 29, 1629.

(13) Cherkasov, A. S.; Bazilevskaya, N. S. Izv. Akad. Nauk. SSSR, Ser. Fiz. 1965, 29, 1284.

Figure 1. Crystal structures of the anthraceno-cryptands A_{22} (left) and A33 (right).

Figure 2. Electronic absorption spectra of A_{nn} , R, and of the N,N'-diethyl-diaza-18-crown-6 in methylcyclohexane (concentration, $<10^{-4}$) at room temperature. The latter has $\epsilon = 210 \text{ M}^{-1} \text{ cm}^{-1}$ at 285 nm. A₂₂, --; A₃₃, ---; R, ..., D, +. Inset: spectra of A₂₂, A₃₃, and R in CH₃OH.

Table I. Electronic Absorption Spectral Data [λ (nm) Wavelength of the Maximum of the Lowest Energy Vibronic Band of the ${}^{1}L_{a}$ Electronic Transition] for Compounds Ann, Mn, and R in Toluene and Methanol at Room Temperature⁴

	λ , nm (ϵ , M ⁻¹ cm ⁻¹)		
·	toluene	methanol	
A ₂₂	406 (9200)	402 (7800)	
A33	406 (8300)	400 (9300)	
M ₂	402 (9200)	398 (9500)	
M ₃	402 (9300)	398 (9700)	
R	402 (11300)	398 (11500)	

^a The intensity (ϵ , M⁻¹ cm⁻¹) is given in parentheses.

The ester 7₂ (mp 88-89 °C), obtained (80% yield) from 10ethylanthrone¹⁴ (4) by the Reformatsky reaction, was readily transformed into the acid $\mathbf{8}_2$ (mp 258 °C; 84% yield). In a similar way, 8₃ was obtained (mp 146 °C; 93% yield) from the ester 7₃ (mp 74-75 °C) prepared (79% yield) by catalytic hydrogenation of ester 6 (mp 110-111 °C). The latter was obtained (77% yield) by treating compound¹⁵ 5 with triethyl phosphonoacetate¹⁶ (Horner-Emmons reaction). The carboxylic acids $\mathbf{8}_n$ were quantitatively converted into the corresponding chlorides 9, with oxalyl chloride in refluxing benzene (9₂, mp 162 °C; 9₃, waxy compound). These acid chlorides were condensed without purification with the N-acetyl-[18]-N₂O₄ derivative¹⁷ to give the corresponding diamides 10_n (waxy compounds; 83% yields). Reduction with diborane and subsequent treatment with concentrated HCl gave M_n (M₂, oil, 92% yield; M₃, oil, 88% yield).

The N,N'-diethyl-[18]-N₂O₄ macrocycle D (mp 48 °C) was obtained by reduction with diborane of the diacetyl derivative (mp 98 °C) resulting from the condensation (90% yield) of acetyl chloride with the $[18]-N_2O_4$ macrocycle.

Characterization of the Free Ligands. (1) Structure of the Anthraceno-Cryptands (A_{nn}) . (a) X-ray Structure Analysis. The crystal structures 9b of the cryptands A_{22} and A_{33} show that a preformed cavity exists which should allow internal cation complexation (Figure 1). In the crystalline state, the nitrogen lone

4149.

⁽¹⁴⁾ Meyer, K. H.; Schlosser, H. Justus Liebigs Ann. Chem. 1920, 420, 130

[.] (15) Martin, R. H.; Van Hove, L. Bull. Soc. Chim. Belg. 1952, 61, 504. (16) Kosolapoff, G. M. J. Am. Chem. Soc. 1946, 68, 1103. (17) Ogata, N.; Sanui, K.; Fujimura, H. J. Appl. Polym. Sci. 1981, 26,

Scheme III. Synthesis of the Reference Compounds M_n^a

^a(a) Zn, BrCH₂CO₂Et, toluene/THF, (b) (EtO)₂POCH₂CO₂Et, NaH, 1,2-dimethoxyethane; (c) H₂, Pd/C, ethanol; (d) *N*-acetyl-"N₂O₄", Et₃N, benzene; (e) (i) B_2H_6/THF , (ii) HCl/H₂O, (iii) LiOH/H₂O.

pairs of A_{22} are oriented, inside the cavity, toward the aromatic ring whereas they point outside for A_{33} .

(b) NMR Spectrometry. The NMR spectra (¹H and ¹³C) in solution (methylene chloride, chloroform^{9a} and toluene⁷) show that the structure of the free ligands is symmetrical on the NMR time scale and resembles that determined previously by X-ray structure analysis.^{9b} In particular, the ¹³C NMR spectra indicate that the carbon skeleton of the two cryptands exhibits C_{2v} symmetry.

(c) UV-Visible Absorption Spectra. UV absorption spectra of A_{nn} in diluted solutions (MCH, MeOH, toluene) are characteristic of 9,10-disubstituted alkylanthracenes. However, they present slight but significant bathochromic and hypochromic shifts in comparison with 9,10-di-*n*-propylanthracene (R) (Figure 2). The UV absorption of the [18]-N₂O₄ chromophore is located at high energy (<300 nm) and its spectral contribution is negligible compared to the ¹B_b transition of the aromatic moiety. The spectra of the molecules M_n have the same positions as the reference compound R and no important interactions between the nitrogen lone pairs and the anthracene ring in the ground state are detected by this technique; nevertheless, a hypochromic effect of M_n compared to R suggests that, on average, the amine and anthracene ¹L_a transition moments tend to be parallel and super-imposed,¹⁸ in a way similar to that in A_{nn} .

The molar extinction coefficients of compounds M_n and R are not significantly affected by the nature of the solvent in contrast to those recorded for the macrobicyclic derivatives A_{nn} , which exhibit a weak but clear variation from toluene to methanol (12-14%) (Table I).

This solvent dependence could be correlated with the well-known ability of cryptands to display several sets of conformers differing by the orientation of the nitrogen lone pairs.^{12,19} Indeed we have demonstrated in previous papers^{7,9a} that A_{22} is present as two main conformers in the ground state: an endo-endo form, prevailing in the crystal,^{9b} which is in rapid interconversion in fluid solution with an exo-exo form where the lone pairs do not interact with the aromatic π cloud. The relative populations of these two conformers are temperature and solvent dependent; in aprotic solvents, the endo-endo conformer is largely favored (6/1),⁷ whereas in a protic solvent such as methanol, the exo-exo species could be predominant due to specific solvation of the nitrogens by the solvent. As a consequence, the UV spectrum is shifted

Figure 3. Electronic absorption spectra of A_{22} in methanol versus -log [H⁺] (25 °C). [A_{22}] = 1.8 × 10⁻⁴ M; I = 0.1 (TBA-ClO₄) (TBA, tetrabutylammonium). -log [H⁺]: 1, 3.57; 2, 5.49; 3, 7.16; 4, 7.54; 5, 8.12; 6, 8.52; 7, 8.71; 8, 8.90; 9, 9.29; 10, 10.02; 11, 11.08; 12, 12.09.

Table II. Protonation Constants of Anthraceno-Cryptands A_{22} and A_{33} in Methanol^{\alpha}

,	ligands				
	$[2.2]^b$ (r = 1.4 Å)	$[2.2.2]^b$ (r = 1.4 Å)	$(r = 1.1 \text{ Å})^c$	$(r = 1.6 \text{ Å})^c$	
og K ₁	10.64 ± 0.01	10.72 ± 0.03	9.97 ± 0.03	10.79 ± 0.17	
$\begin{array}{l} \log K_2 \\ \log K_1 - \log K_2 \end{array}$	9.14 ± 0.01 1.20 ± 0.01	9.03 ± 0.01 1.69 ± 0.01	8.42 ± 0.05 1.55 ± 0.06	9.52 ± 0.27 1.27 ± 0.32	

^a $T = 25.0 \pm 0.1$ °C; I = 0.1 (tetrabutylammonium perchlorate). ^b From ref 20a. ^cRadius of the free cavity of A_{nn} estimated from the crystallographic data.^{9b}

toward higher energy. Although the conformational distribution in A_{33} has not been established, a similar trend may be expected. This interpretation is consistent with the modification of the UV spectra observed in presence of protons. Indeed, the addition of trifluoroacetic acid in excess to the solutions exactly restores the absorption spectrum of the reference compound R by quaternization of the nitrogens.

The constants K_i (i = 1, 2) associated to the equilibria

$$\mathbf{H}^+ + (\mathbf{H}_{i-1}\mathbf{A}_{nn})^{(i-1)+} \rightleftharpoons (\mathbf{H}_i\mathcal{A}_{nn})^{i+1}$$

and corresponding to the protonation of one of the two nitrogen sites of the cryptands have been determined (Table II; Figure 3).

⁽¹⁸⁾ Tinocco, I., Jr. J. Am. Chem. Soc. 1960, 82, 4785.

⁽¹⁹⁾ Graf, F.; Kintzinger, J.-P.; Lehn, J.-M.; Le Moigne, J. J. Am. Chem. Soc. 1982, 104, 1672.

Figure 4. Corrected fluorescence emission spectra of R, A_{nn} , and M_n in degassed tetrahydrofuran (concentration, $<10^{-5}$ M) at 20 °C. The exciplex contribution (...) is obtained from difference spectra between A_{nn} or M_n (--) and R (+); $\lambda_{exc} = 380$ nm. $\phi_{FT} = \phi_{FM} + \phi_{FE}$; ϕ_{FT} , ϕ_{FM} and ϕ_{FE} are total, monomer-like, and exciplex fluorescence emission quantum yields, respectively.

The K_1 values of the [2.1.1]-, [2.2.1]-, and [2.2.2] cryptands decrease when the cavity size increases; this has been explained by the formation of an in-in monoprotonated species.²⁰ In the present case, the reverse is observed from A₂₂ to A₃₃ (Table II): monoprotonation of the smaller anthraceno-cryptand A₂₂ is more difficult by ~ 1 order of magnitude as compared to A₃₃. This may be due to the fact that inside protonation requires a change in bridgehead orientation for A₂₂, which is preferentially out-out in methanol solution, but not for A₃₃, which contains at least one *in* site²¹ (vide infra).

The $\Delta \log K = \log K_1 - \log K_2$ values are known to increase²⁰ when the cavity size of the cryptand decreases, indicating relative destabilization of the diprotonated species. In agreement with these observed trends, $\Delta \log K$ is higher for the smaller anthraceno-cryptand A₂₂. Similarities clearly appear in table II for A₃₃ and [2.2], suggesting a weak participation of the aromatic ring in the protonated species of A₃₃.

According to the conformational dynamics of the cryptand A_{22} , it is reasonable to postulate an out-out geometry for the diprotonated species and infer it for A_{33} . Moreover, this could explain the ¹H NMR spectra of A_{22} in methanol (CD₃OD) in the presence of trifluoroacetic acid. Since the NMR data are consistent with a symmetrical structure of the molecular framework (implying the same conformation at the nitrogen sites), they indicate that this structure differs from metal cations to protons. In the presence of metal cations, it has already been demonstrated^{9a} that both the nitrogen lone pairs present an "in-in" orientation, and consequently, an "out-out" geometry for the diprotonated A_{nn} is likely.

(2) Fluorescence Emission Spectra. Whereas 9,10-di-*n*-propylanthracene (R) displays the expected emission fluorescence for the anthracenic chromophore (Figure 4), anthracenes bridging an [18]-N₂O₄ ring (A_{nn} and M_n) exhibit a dual fluorescence, which can be analyzed as follows: a structured part similar to the emission spectrum of the reference compound R ascribable to the locally excited state and a red-shifted structureless band attributed to an intramolecular exciplex involving nitrogen lone pairs and the aromatic ring^{4,7,21} (the fluorescence excitation spectra scanned on the structured and the nonstructured bands are identical). The relatively weak intensity of A₃₃ fluorescence emission in methanol is ascribable to the fast formation of the exciplex (in less than 50 ps) and to the easy formation of nonemitting ion pairs.

For compounds A_{nn} and M_n , the charge-transfer character of the excited complex has been demonstrated by the red shift of the maximum for exciplex emission as a function of the polarity of the solvent.

Figure 5. Wavenumber of the exciplex emission maximum of A_{nn} at 20 °C as a function of solvent polarity parameter. $f^{-1}/_{2}f'; f = (\epsilon - 1)/(2\epsilon + 1); f' = (n^{2} - 1)/(2n^{2} + 1)$. Solvent $(f^{-1}/_{2}f')$. (1) methylcyclohexane (0.106); (2) trichloroethylene (0.197); (3) diethyl ether (0.256); (4) tetrahydrofuran (0.306); (5) methylene chloride (0.319); (6) methanol (0.391).

Figure 6. Corrected fluorescence emission spectrum of A₂₂ in degassed methanol (-) (concentration <10⁻⁵ M) at 20 °C. $\lambda_{exc} = 380$ nm ($\phi_{\rm F}$, 0.68). The major conformer in this solvent is likely to exhibit an exo-exo geometry for the nitrogen lone pairs. The other (minor) conformer (endo-endo) presumably leads directly to an ion pair stabilized by methanol, which does not emit fluorescence. In the presence of an excess of CF₃CO₂H, $\phi_{\rm F}$, 0.80 (---).

It was argued⁷ that the two nitrogens are simultaneously involved in exciplex formation in A_{22} . A similar geometry should also apply to A_{33} , as shown by solvatochromic experiments (Figure 5) and supported by the detection of only one exciplex by picosecond time resolved spectroscopy.²¹

In the flexible reference molecules M_n , the formation of an intramolecular exciplex involving the two nitrogens seems rather unlikely according to the high fluorescence exciplex quantum yields observed [for example in degassed toluene at 20 °C ($C < 10^{-5}$ M), $\phi_{FE} = 0.39$ for M_2 and 0.12 for M_3], which do not compare well to known data concerning triple exciplexes in flexible systems.²² However it cannot be completely discounted.

In methanol, no exciplex is observed with A_{22} , only a relatively strong monomeric type fluorescence is recorded ($\phi_F = 0.68$). This effect does not appear with the other compounds except to some extent with M_3 , which displays only a weak monomeric emission. The occurrence of a specific solvation of the nitrogen lone pairs of A_{22} by methanol is assumed to maintain an exo-exo geometry in the excited state, hindering the exciplex formation (Figure 6). The minor conformer (endo-endo) presumably leads, in this protic solvent, to an ion pair that does not emit light.²³

Complexation of Cations by Anthraceno-Cryptands A_{nn} in the Ground State. The spectroscopic properties of the anthracenocryptands are strongly modified in the presence of protons and

^{(20) (}a) Spiess, B.; Arnau-Neu, F.; Schwing-Weill, M. J. Helv. Chim. Acta 1979, 62, 1531. (b) Lehn, J.-M.; Sauvage, J.-P. J. Am. Chem. Soc. 1975, 97, 6700.

⁽²¹⁾ Fages, F. Thèse d'Etat, Université de Bordeaux I, Talence, France, 1988.

^{(22) (}a) Larson, J. R.; Petrich, J. W.; Yang, N. C. J. Am. Chem. Soc. 1982, 104, 5000. (b) Yang., N. C.; Gerald, R., II; Wasielewski, M. R. Ibid. 1985, 107, 5531.

 ⁽²³⁾ Beens, H.; Weller, A. In Organic Molecular Photophysics; Birks, J.
 B., Ed.; Wiley: London, 1975; Vol. 2, p 159.

Figure 7. Electronic absorption spectrum (${}^{1}L_{a}$ band, 20 °C) of A₂₂ in methanol (concentration, <10⁻⁴ M): —, without salt; ---, with KClO₄ (10⁻¹ M); …, with AgNO₃ (10⁻¹ M).

Table III. UV Spectral Modification (on the ${}^{1}L_{a}$ Band) of A_{nn} and M_{n} ($\leq 10^{-4}$ M, Methanol, 20 °C) in the Presence of Salts or CF₃COOH (ca. $10^{-1}-10^{-2}$ M)^{*a*}

	LiClO ₄	NaClO ₄	KClO ₄	AgClO ₄	TINO ₃	CF ₃ COOH
Δε]		<u>†9</u>	<u>†</u> 12	↓30	↓19	† 15
$\Delta\lambda \int^{A_{22}}$	-	→2	⊷1	→10	-→7	_
$\Delta \epsilon$		↓13	↓2	↓28	↓4	† 16
$\Delta\lambda$	-	→ 1	→ 1	→4	→2	⊷ 1
$\Delta \epsilon$			<u>†</u> 5	† 1	† 2	<u>†6</u>
$\Delta\lambda$	*	*	→ 1	→ 1	→3	←2
$\Delta \epsilon$				† 7	†2	
$\Delta \lambda \int^{M_3}$	*		_	→ 1	→ 1	

^{*a*} $\Delta \epsilon$ represents the variation (%) of the absorption intensity and $\Delta \lambda$ the shift (nm). Arrows \uparrow and \downarrow denote hyper- and hypochromism, respectively. Arrows \rightarrow and \leftarrow indicate batho- and hypsochromism respectively. (-) no effect; (*) not recorded.

of the metal cations examined (Li⁺, Na⁺, and K⁺ perchlorates and Ag^+ and Tl^+ nitrates).

(1) UV-Visible Absorption Spectroscopy. The absorption spectra of A_{nn} but not of R are affected by the addition of CF₃COOH or of salts (except LiClO₄), the perturbation depending on the nature of the added species (Figure 7). Under the same experimental conditions, the spectra of the flexible compounds are only little altered (Table III).

Indeed, with M_n only weak hyperchromic effects are observed while some hypochromic effects are noticed with A_{nn} , depending on the nature of the added cation. Moreover, heavy cations, i.e., Ag^+ and Tl^+ , produce hypochromic and bathochromic shifts (larger with A_{22}).

These data are consistent with the formation of complexes between A_{nn} and the cations (except Li⁺, probably too small to be well complexed) in which the ion is bound to the [18]-N₂O₄ ring and held in the vicinity of the π system. This probably explains the red shift of the spectra with Ag⁺ and Tl⁺, which points to a ground-state complex between the ions and the aromatic ring.

(2) Stoichiometry and Stability Constants of the Complexes. The electronic spectra and the stability constants of the Tl(I) and Ag(I) (1:1) complexes formed with A_{22} (Figure 8) and A_{33} (Table IV) in methanol have been determined by simultaneous potentiometric and spectrophotometric measurements. The data have been processed by the LETAGROP-SPEFO program.²⁴

Though the cavity size of the cryptand A_{22} seems compatible with the ionic radius of the Ag(I) cation, the stability constant of the [Ag⁺ \subset A₂₂] cryptate decreases as compared to [Ag⁺ \subset 2.2]

Figure 8. Calculated electronic absorption spectra of A_{22} and its Tl(I) and Ag(I) complexes in methanol. 1, A_{22} ; 2, $[TI^+ \subset A_{22}]$; 3, $[Ag^+ \subset A_{22}]$.

Table IV. Stability Constants of Thallium(I) and Silver(I) Complexes Formed with the Anthraceno-Cryptands A_{22} and A_{33} in Methanol^a

	$\log K_{\rm s}$					
ligands	[2.2] (r = 1.4 Å)	[2.2.2] (r = 1.4 Å)	A_{22} (r = 1.1 Å)	A_{33} (r = 1.6 Å)		
$\Gamma 1^+ (r_i = 1.49 \text{ Å})$	3.54 ^b	10.10 ^c 9.10 ^d 12.20 ^e f	8.52	7.07		
$Ag^+ (r_i = 1.13 \text{ Å})$	10.02 ^g 10.18 ^b	12.30 ^h 12.22 ^g	9.51	9.36		

^a $T = 25.0 \pm 0.1$ °C; I = 0.1 (tetrabutylammonium perchlorate). The accuracy of our results is 0.05 for log K_s and is equal to 2σ . r_i , ionic radius of cations;³¹ r, radius of the cavity of the coronand or cryptand; the latter was estimated from crystallographic data.^{9b} ^bCox, B. G.; Firman, P.; Horst, H.; Schneider, H. Tetrahedron 1983, 39, 343. ^cYee, E. L.; Tabib, J.; Weaver, M. J. J. Electroanal. Chem. 1979, 96, 241. ^dSpiess, B., Thèse de doctorat d'Etat, Université Louis Pasteur, Strasbourg, France, 1981. ^eCox, B. C.; Schneider, H.; Schulz, H.; Stroka, J. J. Am. Chem. Soc. 1978, 100, 4746. ^fGutknecht, H.; Schneider, H.; Stroka, H. Inorg. Chim. Acta 1985, 102, 95. ^b Lejaille, M. F.; Livertoux, M.; Guidon, C.; Bessierre, J. Bull. Soc. Chim. Fr. 1978, 373.

and $[Ag^+ \subset 2.2.2]$ cryptates (Table IV). The loss of two coordination sites in [2.2], A_{22} , and A_{33} silver(I) complexes induces a decrease in stability constants of at least 2 orders of magnitude, as compared to $[Ag^+ \subset 2.2.2]$ in the same solvent. In addition, the deformation of the cavity by the aromatic groups may also contribute in particular by increasing the distance between the bridgehead nitrogens, which are expected to be the preferred coordination sites of the Ag⁺ ions.

Similarly, for the A22 and A33 thallium(I) cryptates compared to $[Tl^+ \subset 2.2.2]$, a decrease of at least 1 order of magnitude of the stability constant is found (Table IV). In order to analyze the above trend, it is appropriate to compare the stability of K^+ complexes with two macrobicyclic ligands [2.2.2] (log $K_s = 8.7$; Table IV, footnote h) and $[2.2.C_8]$ (log $K_s = 5.2^{20b}$) in methanol. In the latter case, the loss of stability is ~ 3 orders of magnitude for the complex formed with the cryptand with the hydrocarbon chain $[2.2,C_8]$. It appears that the loss in stability of the A₂₂ thallium(I) complex compared to $[T1^+ \subset 2.2.2]$ is substantially smaller than the stability decreases between [2.2.2] and $[2.2.C_8]$ K^+ complexes, in spite of the deformation of the cavity of A_{22} . A stabilization effect by the anthracene moiety of the thallium(I) A₂₂ complex is observed here, in agreement with NMR emission fluorescence and X-ray structure data,^{9a,b} which have shown that the cation Tl⁺ is inside the cavity, coordinated by the oxygen and nitrogen atoms of the ligand and in interaction with the aromatic ring

(3) ¹H and ¹³C NMR Spectroscopy. NMR spectra $(D_2Cl_2, DCCl_3, toluene)$ were recorded for cryptands A_{nn} in the absence and in the presence of cations (K^+, Tl^+, Ag^+) . The detailed analysis of the spectra was reported elsewhere ^{7,9a}

From this study, it emerges that the addition of an excess of salts (K^+, Ag^+, Tl^+) to the solutions of A_{nn} is followed by a marked modification of the spectra (Figure 9) indicative of an important conformation reorganization showing that the cation is inside the cavity.

All the ¹H NMR patterns appear to be affected in a similar way by the three cations, which induce a deshielding of the

Figure 9. 200-MHz ¹H NMR spectra of A_{22} in CDCl₃ at room temperature. Top: without salt. Bottom: with TlNO₃ (saturated solution).

Figure 10. 50-MHz ¹³C NMR spectra of A_{22} in CDCl₃ at room temperature. Top: without salt. Bottom: with TlNO₃ (saturated solution). The coupling constants (J_{T-C}) (hertz) are given in parentheses.

Figure 11. Molecular structure of Tl^+-A_{22} complex along the short axis of the anthracene ring. Note the deformation of the aromatic nucleus. The distance between Tl^+ and the average plane of the aromatic ring is 3.2 Å.

aromatic and benzylic signals. Analogous trends were noted^{9a} in the 13 C NMR spectra.

The results obtained with Tl⁺ must be emphasized; indeed coupling constants between the cation and H and C nuclei of the aliphatic part (3-14 Hz) of the ligand A_{22} appear in line with earlier data reported²⁵ for [2]cryptates. Moreover, coupling constants (120-140 Hz) between Tl⁺ and aromatic carbons of the central ring were observed for the first time; they are evidence of some bonding between the cation and the anthracene ring and thus of the insertion of the cation inside the cavity (Figure 10). No perturbation of the spectra of R was detected in the presence of Tl⁺.

With A_{33} , the coupling constants are not easy to determine (at room temperature the signals broaden); probably the size of the cavity is too large to keep the cation tightly in a definite position. Further, for the flexible opened molecule (M_2), no coupling was observed between the protons and the Tl⁺ nucleus; only a deshielding of the signals of the aliphatic protons was detected when adding a large excess of TINO₃ to the solutions.

Figure 12. Corrected fluorescence emission spectra of A_{22} in degassed CH_2Cl_2 (concentration, <10⁻⁶ M, λ_{esc} , 380 nm, 20 °C). —, without salt; ---, with KClO₄ (saturated solution).

Figure 13. Corrected fluorescence emission spectra of M_2 in nondegassed methanol (10⁻⁶ M, λ_{exc} , 380 nm, 20 °C). —, without salt; + with KClO₄ (saturated solution); …, the fluorescence exciplex spectrum.

Table V. Fluorescence Quantum Yields of A_{nn} , M_n , and R in Methanol (concentration, <10⁻⁵ M, 20 °C, A_{exc} , 380 nm) in the Absence and the Presence of Salts or CF₃CO₂H (<10⁻² M)

	none	LiClO ₄	NaClO ₄	KClO ₄	AgClO ₄	TINO ₃	CF ₃ CO ₂ H
A ₂₂	0.68	0.70	0.57	0.64	0.05	0.05	0.80
A33	0.04ª	0.05ª	0.17	0.30	0.23ª	0.07	0.70
M_2^d	0.10ª	с	С	0.31	0.31	0.29	0.50
M ₃ ^d	0.26	с	С	0.50	0.26	0.46	0.53
R	0.76	b	b	b	0.39	0.67	b

^a Dual fluorescence emission. ^b No effect observed. ^c Not measured. ^d Nondegassed.

(4) Structure of the TlNO₃-A₂₂ Complex ([Tl⁺ \subset A₂₂], NO₃⁻). Monocrystals of Tl⁺, A₂₂ complex were obtained from chloroformic solution of A₂₂ saturated with TlNO₃ and the structure was determined by X-ray crystallography.^{9a} As expected from spectroscopic measurements, Tl⁺ is encaged inside the cryptand (Figure 11) and coordinated with the oxygen and nitrogen atoms as well as the aromatic ring^{9a,c} (Tl⁺...anthracene = 3.2 Å). From examination of the NMR and UV spectra of the 1:1 complexes of A_{nn} with the other cations, it is deduced that they are also inclusion complexes.

(5) Fluorescence Emission Spectra. (a) Light-Metal Cations. Addition of complexable cations (Na⁺, K⁺) to the solution of A_{nn} (protic or aprotic solvents) strongly reduces the red-shifted emission (exciplex component) and increases distinctly the intensity of the structured spectral part (Figure 12); no effect was detected with Li⁺ (Table V). Thus involvement of the nitrogen sites in complexation is beyond doubt, since complexation prevents or strongly reduces the amine-anthracene exciplex formation.

Similar trends are observed with the flexible models M_n (Figure 13) where the cation is expected to be crowned by the [18]-N₂O₄ macrocycle and so hinders the intramolecular exciplex formation. Under the same experimental conditions, no spectral modifications were detected with R. Gradual addition of cations to A_{nn} solutions results in a progressive increase of the fluorescence intensity as shown in Figure 14. The resulting titration curves point to a 1:1 stoichiometry for the complex. Thus, compounds A_{nn} , especially A_{33} whose fluorescence emission was of low intensity, undergo a spectacular increase of light emission by addition of salts in the manner of a lamp that rekindles by addition of oil. These observations are in line with other recent results.¹

⁽²⁵⁾ Lehn, J.-M.; Sauvage, J.-P.; Dietrich, B. J. Am. Chem. Soc. 1970, 92, 2916.

Figure 14. Fluorescence emission intensity of compound A_{22} (10⁻⁵ M) in nondegassed methanol as a function of added KClO₄ (20 °C, λ_{exc} , 380 nm). KClO₄ (10⁻⁵ M): 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 4.0. The titration curve $I_f \propto [K^+]$ points to a 1:1 stoichiometry for $[K^+ \subset A_{22}]$ (Inset).

Figure 15. Corrected fluorescence emission spectra of A_{22} in degassed methanol (concentration, <10⁻⁵ M, λ_{exc} , 380 nm, 20 °C) in the presence of K⁺ (10⁻² M) (—) and Tl⁺ (---).

(b) Heavy-Metal Cations. In contrast to protons and alkalimetal cations, Ag^+ and Tl^+ behave as fluorescence quenchers, especially for A_{22} (Table V) (cation concentration ~1000 fold in excess). If the reference compound R also undergoes a fluorescence quenching by the classical heavy-atom effect, which increases intersystem crossing $(S_1 \rightarrow T_2)$, the effect is not so important under the same experimental conditions (Table V). The flexible reference compounds M_n exhibit a fluorescence quenching intermediate between that of A_{nn} and R; this is accompanied by the disappearance of exciplex emission, in connection to the complexation of Ag^+ and Tl^+ by the [18]-N₂O₄ unit; the quenching is less intense than for A_{nn} as the average distance between the cation and the anthracene ring is greater.

The fluorescence emission spectra of A_{nn} in the presence of these two heavy cations was given special attention.

(c) Thallium Cations (Tl⁺). If the fluorescence spectrum of A_{22} with Tl⁺ is a structured anthracene monomer type emission,^{9a,c} it is not superimposable to the spectra displayed by the light-cation cryptates (i.e., $[K^+ \subset A_{22}]$) since a red shift of ~730 cm⁻¹ was measured (Figure 15). As the excitation fluorescence spectrum well matches the absorption spectrum of the species $[Tl^+ \subset A_{22}]$, it was concluded^{9a,21} that the emission originates from an excited [Tl(I):anthracene] complex preformed in the ground state. Interestingly, only a few weak complexes between Tl⁺ and arenes²⁶ are known in the crystalline state; this anthraceno-cryptand A_{22} appears well suited for revealing and studying this kind of faint interaction even in fluid solutions. With A_{33} , the fluorescence emission is close to that observed with light cations, probably as a consequence of the larger size of the cavity, in agreement with NMR measurements and UV spectroscopy.^{9a} The anthraceno crown ethers M_n behave as A_{33} in presence of Tl⁺.

Figure 16. Corrected fluorescence emission spectra of A₃₃ in degassed methanol (concentration, <10⁻⁵ M, λ_{exc} , 380 nm, 20 °C) in the presence (10⁻² M) of AgNO₃ (--) and NaClO₄ (---). (...) represents the fluorescence exciplex spectrum.

Scheme IV^a

^a $k_{\rm E}$ and $k_{\rm -E}$ are the rate constants for exciplex formation and dissociation, respectively. $\tau_{\rm M}$ and $\tau_{\rm E}$ are the fluorescence lifetimes of locally excited ¹A* (without any interaction with the nitrogen lone pairs or Ag⁺) denoted "monomer" and of the exciplex (Ag⁺:A₃₃), respectively. At 20 °C, $k_{\rm E} = 1.9 \times 10^8 \, {\rm s}^{-1}$; $1/\tau_{\rm E} = 2.1 \times 10^8 \, {\rm s}^{-1}$; $\Delta G^{\circ}({\rm M} \rightarrow {\rm E}) = -0.37 \, {\rm kcal \ mol^{-1}}$.

(d) Silver Cations (Ag^+) . The solutions of A_{22} containing Ag^+ only display a pure monomeric type fluorescence emission spectrum as with the reference compound R or A_{22} with light cations. The excitation spectrum (scanned at all the wavelengths) fits well with the absorption spectrum of the reference compound R and not with that of a solution of A_{22} with AgNO₃. This means that the ground-state charge-transfer complex [Ag(I):anthracene] does not emit light and that emission originates from a nonperturbed anthracene chromophore. These results are presumably ascribable to the presence of two ground-state complexes: the major one with Ag^+ inside the cavity, forming a nonfluorescent chargetransfer complex, and the minor one with Ag^+ externally bound to the diaza-crown and also partially solvated by NO₃ or CH₃OH; because the silver cation is remote from the anthracene ring, the latter complex emits a fluorescence similar to that of R.

$$(A_{22}, Ag^+)_{out} \rightleftharpoons Ag^+ \subset A_{22}$$

In contrast, the fluorescence emission spectrum of A_{33} , Ag^+ solutions is not superposable with those recorded with light cations (i.e., Na⁺ and K⁺) (Figure 16). By subtraction of the degassed methanol solution spectrum of A_{33} , Na⁺ from that of A_{22} , Ag^+ , a nonstructured band peaking at 460 nm emerges. The excitation spectra independent of the wavelength of observation match the absorption spectrum of A_{33} , Ag^+ , underlining the common origin of both emissions. The nonstructured emission band (which disappears in the presence of O_2) is postulated to arise from an exciplex between Ag^+ and anthracene. Up to now, only perylene has been reported²⁷ to form an exciplex with Ag^+ .

The occurrence of an exciplex is fully confirmed by the analysis of the fluorescence emission decays, provided the classical Birks' scheme applies²⁸ (Scheme IV).

The experimental time dependence of the monomer $I_{\rm M}(t)$ and exciplex $(I_{\rm E})(t)$ fluorescence intensity is found to be given by the following expressions:

^{(26) (}a) Strauss, S. H.; Noirot, M. D.; Anderson, O. P. Inorg. Chem. 1986, 25, 3851. (b) Schmidbaur, H.; Hager, R.; Huben, B.; Müller, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 338 and references therein.

^{(27) (}a) Läufer, A. G. E.; Dreeskamp, H.; Zachariasse, K. A. Chem. Phys. Lett. 1985, 121, 523. (b) Läufer, A. G. E.; Dreeskamp, H. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 1195.

⁽²⁸⁾ Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience: London, 1970.

$$\lambda_{obs}(405 \text{ nm}) \quad I_{M}(t) \propto 0.26 \exp(-t/2.36 \text{ ns}) + 0.40 \exp(-t/6.82 \text{ ns})$$

$$\lambda_{obs}(510 \text{ nm}) \quad I_{E}(t) \propto -0.25 \exp(-t/2.23 \text{ ns}) + 0.77 \exp(-t/6.46 \text{ ns})$$

The exciplex fluorescence response function (at 510 nm) clearly grows from zero, as shown by the negative value of the first preexponential term. The fact that the sum of preexponential terms of the exciplex decay has a positive value (± 0.52) and is not equal to zero, as required within the context of the proposed kinetic scheme, is caused by the presence of "monomer" emission at the observation wavelength (510 nm; see Figure 16). It should be noted that the lifetime values are similar for both monomer and exciplex decays. These observations confirm that the kinetic scheme correctly describes the proposed mechanism of the fluorescent properties of A₃₃ with Ag⁺.

From the values of the decay parameters and the monomer amplitude ratio, the rate constants appearing in the proposed scheme can be calculated (taking $\tau_{\rm M} = 14$ ns, the lifetime of A* obtained with A₃₃ in the presence of Na⁺ or K⁺). The following rate parameters were obtained at 20 °C:

$$k_{\rm E} = 1.9 \times 10^8 \,{\rm s}^{-1}$$
 $k_{-\rm E} = 1.0 \times 10^8 \,{\rm s}^{-1}$
 $1/\tau_{\rm E} = 2.1 \times 10^8 \,{\rm s}^{-1}$

leading to

$$\Delta G^{\circ} = -0.37 \text{ kcal/mol}$$

A more detailed study of the thermodynamics and kinetics of the exciplex formation is under investigation.

Conclusion

We have prepared a new class of macrobicyclic photoactive ligands, the anthraceno-cryptands A_{nn} , in which the anthracenic nucleus bridges an [18]-N₂O₄ macrocycle. These molecules display a dual fluorescence (monomer and exciplex) resulting from the intramolecular interaction between the nitrogen lone pairs and the π system. The fluorescence of these compounds was shown to be very sensitive to the solvent and the presence of metal cations. Protic solvents, such as methanol, can induce hydrogen bonds with the nitrogens, relieving the intramolecular nitrogen-anthracene interaction; the solvation is followed by a net enhancement of the monomer emission. Cations that enter into the cavity of A_{nn} form stable 1:1 cryptates, the cations being held near the aromatic ring. The nitrogen lone pairs, found to quench the singlet excited state of the free ligands, are involved in the complexation of the cation inducing a strong increase of the fluorescence intensity (light cations) with the disappearance of the exciplex component. These phenomena are dependent on the nature of the cation. Unusual interactions between heavy-metal cations and the central ring of anthracene have been discovered with these chelators, Tl⁺ leading with A_{22} to a complex presenting novel interactions and Ag^+ to a fluorescent exciplex with A₃₃.

Experimental Section

Chemicals and solvents (spectrometric grade) were used directly as received. Proton magnetic resonance spectra were recorded on a Bruker AC200 (200 MHz) spectrometer in CDCl₃, CD₂Cl₂, CD₃OD, and toluene- d_8 and on a Perkin-Elmer R24B spectrometer in CDCl₃ and CCl₄. The chemical shifts are given in δ values from Me₄Si. UV absorption spectra were recorded on a Cary 219 spectrophotometer at 25 °C. The IR spectrometer was a Perkin-Elmer 1420, and the mass spectrometer an VG Micromass Model 70-70. Fluorescence spectra were obtained with a Hitachi Perkin Elmer MPF44 fluorometer, corrected for emission. The fluorescence quantum yields were determined by comparison with quinine sulfate in 1 N sulfuric acid,²⁹ and the fluorescence lifetimes were measured by single-photon counting using an Applied Photophysics apparatus as already described.³⁰ The purity of all new compounds was checked by TLC (silica gel). Ionic cation radii (Å) were taken from ref

31: Li^+ (0.78), Na^+ (0.98), K^+ (1.33), Tl^+ (1.49), Ag^+ (1.13).

The thermodynamic constants and the electronic spectra of the different species were determined by simultaneous potentiometric and spectrophotometric measurements. Anthraceno-cryptands solutions (10-4 M), in the presence or absence of Ag(I) and Tl(I), were acidified with HClO₄ (Merck, per anal., 70%) up to 3×10^{-3} M and tetrabutylammonium methoxide (Merck, 25% in methanol) was added progressively. A small sample (500 μ L) was taken after each addition in order to record the absorption spectrum on a Kontron Uvikon 860 spectrophotometer. The -log [H+] values were measured with a combined glass electrode (Tacussel, High Alcalinity), in which the reference electrode (Ag/AgCI) was filled with tetrabutylammonium chloride $(5 \times 10^{-2} M)$ and tetrabutylammonium perchlorate $(5 \times 10^{-2} M)$ in methanol. Potential differences were measured with a Tacussel Isis 20 000 millivoltmeter. The spectrophotometric and potentiometric data were processed by the program LETAGROP-SPEFO.²⁴ The range of $-\log [H^+]$ used in the experiments was from 3 to 14 for the free ligands and for the thallium complexes and from 3 to 10 for the silver complexes. The metal (TINO₃ and AgNO₃, Merck per anal.) concentrations were 3-fold in excess with respect to the anthraceno-cryptands concentrations. The ionic strength was maintained constant with tetrabutylammonium perchlorate, 0.1 M.

2,13-Dioxo-6,9,17,20-tetraoxa-3,12-diaza[14.8^{3,12}](9,10)anthracenophane (3_{22}). To 1.5 L of stirred and degassed benzene were added simultaneously and dropwise at room temperature (8 h) under high dilution conditions two degassed benzenic solutions (2 × 500 mL) of 9,10-anthracenediacetyl dichloride¹¹ (2.8 g, 9 mm0) and of the [18]-N₂O₄ macrocycle (2.0 g, 8 mm0) with triethylamine (1.9 g, 19 mm0). After the addition was completed, the mixture was filtered and the solvent removed under reduced pressure. Chromatography on alumina column (CH₂Cl₂ as eluent) of the solid brown crude product gave 3_{22} as a yellow solid (2.4 g, 61% yield): mp >260 °C; ¹H NMR δ 2.4–4.1 (m, 24 H, "N₂O₄" ring), 4.5–5.1 (AB, 4 H, J = 16 Hz, ArCH₂CO), 7.5–8.8 (m, 8 H, Ar); IR (KBr pellets) 2940, 2860, 1630, 1470, 1450, 1410, 1120, 1080, 780, 745 cm⁻¹; MS m/z 520 (calcd 520). Anal. Calcd for C₃₀H₃₆N₂O₆; C, 69.21; H, 6.97; N, 5.38; O, 18.44. Found: C, 68.15; H, 6.91; N, 5.38; O, 18.22.

3,14-Dioxo-7,10,19,22-tetraoxa-4,13-diaza[16.8^{4,13}](9,10)anthracenophane (3_{33}). By the same procedure as above, using 1.0 g (4 mmol) of [18]-N₂O₄ macrocycle 1.0 g (20 mmol) of triethylamine, and 1.5 g (4.6 mmol) of 9,10-anthracenedipropionyl dichloride,¹¹ 3_{33} was obtained as a yellow solid (1.4 g, 65%): mp >260 °C; ¹H NMR δ 3.0–4.0 (m, 32 H, "N₂O₄" ring, ArCH₂CH₂CO), 7.2–8.3 (m, 8 H, Ar); IR (KBr pellets) 2950, 2840, 1630, 1450, 1430, 1410, 1110, 750 cm⁻¹; MS *m*/*z* 548 (calcd 548). Anal. Calcd for C₃₂H₄₀N₂O₆: C, 70.05; H, 7.35. Found: C, 70.13; H, 7.26.

6,9,17,20-Tetraoxa-3,12-diaza[14.8^{3,12}](9,10)anthracenophane (A₂₂). A solution of the diamide 3_{22} (0.52 g, 1 mmol) in 30 mL of anhydrous tetrahydrofuran (THF) was placed under nitrogen atmosphere in a 100-mL two-neck flask equipped with a reflux condenser and a serum cap; 5 mL of a solution of diborane (1 M in THF) was added with a syringe. The mixture was stirred and refluxed for 2 h. After cooling to room temperature, distilled water was added cautiously. The solvent was evaporated and the crude amine borane derivative (mp >260 °C, pale yellow powder) obtained was used for the next step without further purification. This solid was treated under N, atmosphere with 10 mL of HCl (6 N) at 100 °C for 5h, after which the solution was cooled to room temperature and 100 mL of distilled water was added. The aqueous layer was made alkaline (pH = 8-9) by addition of LiOH (30%) and extracted with 3×50 mL of CHCl₃. The combined chloroform extracts were dried (MgSO₄) and evaporated to give a brown solid material, which was purified by chromatography on neutral alumina (Merck II-III, eluent CH₂Cl₂). The pale yellow solid was crystallized in toluene (65%): mp > 260 °C; ¹H NMR δ 2.40 (m, 8 H, NCH₂CH₂O), 2.53-2.77 (m, 8 H, NCH₂CH₂O), 3.05 (m, 8 H, OCH₂CH₂O), 3.05 ("t" 4 H, NCH₂CH₂Ar), 3.83 (m, 4 H, CH₂Ar), 7.48–8.31 (m, 8 H, Ar); IR (KBr pellets) 2830, 2760, 1600, 1450, 1425, 1340, 1285, 1260, 1240, 1120, 1110, 1080, 1060, 1010, 950, 820, 750, 730, 660, 640 cm⁻¹; MS m/z 492 (calcd 492). Anal. Calcd for C₃₀H₄₀N₂O₄: C, 73.14; H, 8.18; N, 5.69; O, 12.99. Found: C, 72.44; H, 8.22; N, 5.63; O, 13.01.

7,10,19,22-Tetraoxa-4,13-diaza[16.8^{4,13}](9,10) anthracenophane (A₃₃). Similarly, A₃₃ was prepared from the diamide 3₃₃. A₃₃ was isolated by neutral alumina chromatography (CH₂Cl₂) and crystallization in toluene as a yellow solid (77%): mp 215 °C; ¹H NMR δ 2.09 (m, 4 H, ArCH₂CH₂CH₂N), 2.38 (m, 8 H, NCH₂CH₂O), 2.41 (m, 4 H, ArCH₂CH₂O), 7.4", 4 H, ArCH₂CH₂O), 3.08 (m, 8 H, NCH₂CH₂O), 3.08 (m, 8 H, OCH₂CH₂O), 3.08 (m, 8 H, NCH₂CH₂O), 3.040, 2920, 2860, 1620, 1470, 1445, 1360, 1335, 1315, 1250,

⁽²⁹⁾ Hanai, S.; Hirayama, F. J. Phys. Chem. 1983, 87, 83, and references therein.

⁽³⁰⁾ Desvergne, J.-P.; Bitit, N.; Castellan, A.; Bouas-Laurent, H.; Soulignac, J.-C. J. Lumin. 1987, 37, 175.

⁽³¹⁾ Handbook of Chemistry and Physics, 49th ed.; CRC: Cleveland, OH, 1968-1969.

1140, 1110, 1010, 910, 780, 750, 660 cm⁻¹; MS m/z 520 (calcd 520). Anal. Calcd for C₃₂H₄₄N₂O₄·1/₂H₂O: C, 72.45; H, 8.49; N, 5.28; O, 13.58. Found: C, 72.88; H, 8.32; N, 5.28; O, 13.54.

9-[(Ethoxycarbonyl)methyl]-10-ethylanthracene (7_2) . To a stirred suspension of zinc powder (6.5 g, 0.1 mol) in dried THF (150 mL) was added ethyl bromoacetate (17 g, 0.1 mol) dropwise under N2 atmosphere. After completion of the operation, a small amount of iodine was added; then the reacting medium was refluxed and 10-ethylanthrone¹⁴ (4.5 g, 20 mmol) dissolved in THF-toluene (1/1 v/v; 100 mL) was added dropwise. Reflux was continued for 2 h; concentrated H₂SO₄ (5 mL) was added and reflux was maintained 1 h longer. After being cooled to room temperature, the mixture was hydrolyzed with acidic water (10% H₂SO₄, 500 mL). The usual workup was followed by chromatography on an SiO_2 column (eluent ligroin), and 7_2 was obtained (4.7 g, 80%) as yellow pale crystals: mp 88-89 °C; ¹H NMR δ 0.80-1.50 (2 t, 6 H, CH₃C-H₂OCO, CH₃CH₂Ar), 3.40 (q, 2 H, CH₃CH₂Ar), 3.90 (q, 2 H, CH₃CH₂OCO), 4.30 (s, 2 H, ArCH₂COO), 7.0-8.30 (m, 8 H, Ar); IR (KBr pellets) 3080, 2970, 2940, 2910, 2880, 1730, 1620, 1530, 1480, 1450, 1440, 1385, 1370, 1320, 1275, 1210, 1170, 1030, 935, 800, 780, 755, 730, 640 cm⁻¹; MS m/z 292 (calcd 292). Anal. Calcd for C₂₀H₂₀O₂: C, 82.19; H, 6.85; O, 10.99. Found: C, 81.60; H, 6.99; O, 11.09

9-[2-(Ethoxycarbonyl)vinylene]-10-ethylanthracene (6). To a stirred suspension of NaH (1.25 g, 52 mmol) in dried dimethoxyethane (DME, 200 mL) was added dropwise, at room temperature, triethyl phosphon-oacetate¹⁶ (12 g, 53 mmol). Stirring was continued for 1 h, and a solution of 9-ethyl-10-formylanthracene¹⁵ (10 g, 43 mmol) in DME (100 mL) was slowly added. The reacting medium turned red. Stirring was continued for 2 h after the addition, and the solution was hydrolyzed with water (200 mL). After the usual workup and crystallization in ethanol, **6** was obtained as red plates (10 g, 76%): mp 110–111 °C; ¹H NMR δ 1.50 (2 t, 6 H, CH₃CH₂, CH₃CH₂OCO), 3.50 (q, 2 H, CH₃CH₂Ar), 7.20–8.40 (m, 8 H, Ar), 6.1–8.6 (AB, J = 16 Hz, HC=CH); IR (KBr pellets) 3080, 2980, 2940, 2880, 1720, 1635, 1450, 1385, 1370, 1310, 1260, 1230, 1170, 1060, 1030, 990, 930, 880, 850, 760, 720, 645 cm⁻¹; MS m/z 304 (calcd 304). Anal. Calcd for C₂₁H₂₀O₂: C, 82.89; H, 6.58; O, 10.53. Found: C, 82.99; H, 6.66; O, 10.57.

9-[2-(Ethoxycarbonyl)ethyl]-10-ethylanthracene (7₃). Catalytic hydrogenation (atmospheric pressure, room temperature) of ester 6 (2.9 g, 9.5 mmol) over 10% Pd/C (0.5 g) in anhydrous ethanol (100 mL) afforded, after crystallization in aqueous ethanol, 2.3 g (79%) of ester 7₃ as a bright yellow solid: mp 74–75 °C; ¹H NMR δ 0.90–1.50 (2 t, 6 H, CH₃CH₂), 2.4–4.3 (m, 8 H, CH₂), 7.1–8.2 (m, 8 H, Ar); IR (KBr pellets) 3080, 2960, 1720, 1480, 1440, 1425, 1290, 1250, 1190, 1040, 740, 640 cm⁻¹; *m/z* 306 (calcd 306). Anal. Calcd for C₂₁H₂₂O₂·¹/₂H₂O: C, 80.00, H, 7.30; O, 12.69. Found: C, 80.35; H, 7.21; O, 12.17.

(9-Ethyl-10-anthryl)acetic Acid (8₂). A mixture of 2.0 g (6.8 mmol) of ester 7₂, 2.0 g (50 mmol) of NaOH, and 100 mL of ethanol was stirred at reflux for 2 h under N₂ atmosphere. Most of the alcohol was removed under reduced pressure and the brown residue dissolved in the minimum of water. The aqueous solution was cooled and acidified with concentrated HCl. The yellow precipitate was crystallized in benzene, which gave pure 8₂ as pale yellow needles (1.5 g, 83%): mp 258 °C; IR (KBr pellets) 3700–3100, 2950, 1685, 1615, 1440, 1420, 1320, 1270, 1220, 795, 770, 750, 630 cm⁻¹; MS m/z 264 (calcd 264). Anal. Calcd for C₁₈H₁₆O₂: C, 81.82; H, 6.06; O, 12.12. Found: C, 81.06; H, 6.04; O, 12.20.

 β -(9-Ethyl-10-anthryl)propionic Acid (8₃). Prepared as 8₂ from the ester compound 7₃ (1 g, 3.3 mmol) as a yellow amorphous solid (0.85 g, 93%): mp 146 °C; ¹H NMR δ 1.40 (t, 3 H, CH₃), 2.4–4.0 (m, 6 H, CH₂), 7.2–8.4 (m, 8 H, Ar), 11.4 (s, 1 H, COOH); IR (KBr pellets) 3600–3100, 2960, 2920, 1700, 1630, 1480, 1450, 1380, 1300, 1260, 1210, 1160, 1100, 800, 750 cm⁻¹; MS *m/z* 278 (calcd 278). Anal. Calcd for C₁₉H₁₈O₂·H₂O: C, 77.02; H, 6.76. Found: C, 77.81; H, 6.71.

9-(2,13-Dioxo-6,9,17,20-tetraoxa-3,12-diaza[$8^{3,12}$]docosyl)-10-ethylanthracene (10₂). A benzene (50 mL) solution of 1.50 g (6 mmol) of acid chloride 9₂ prepared from acid 6₂ (1.5 g, 5.7 mmol), oxalyl chloride (3.0 g, 24 mmol), and benzene (50 mL) was added dropwise to a solution of the *N*-acetyl-[18]-N₂O₄ macrocycle¹⁷ (1.5 g, 6 mmol) and triethylamine (1.0 g, 10 mmol) in benzene (100 mL). Then 20 mL of sodium hydroxide (10%) was added and the mixture was stirred for 15 min. After decantation, the benzene solution was extracted successively with (i) 30 mL of sodium hydroxide (10%), (ii) 3×20 mL of hydrochloric acid (10%), and (iii) distilled water up to neutral pH. The organic phase was dried (MgSO₄) and evaporated to give an orange waxy product (2.3 g, 84%): ¹H NMR δ 1.2 (t, 3 H, CH₃CH₂Ar), 1.80 (s, 3 H, CH₃CON), 3.35 (m, 26 H, CH₂), 4.40 (s, 2 H, ArCH₂CON), 7.10–8.20 (m, 8 H, Ar); IR (NaCl, film) 3080, 2980, 2940, 2860, 1640, 1450, 1415, 1360, 1350, 1220, 1120, 1030, 910, 780, 760, 730 cm⁻¹.

9-(3,14-Dioxo-7,10,18,21-tetraoxa-4,13-diaza[8^{4,13}]tricosany])-10ethylanthracene (10₃). By the same procedure as above, using 2.0 g (7 mmol) *N*-acetyl-[18]-N₂O₄ macrocycle, 1.5 g (15 mmol) of triethylamine and 2.0 g (7 mmol) of acid chloride **9**₃ (prepared as **9**₂), **10**₃ was obtained as an orange pasty product (3.1 g, 83%): ¹H NMR δ 1.30 (t, 3 H, *CH*₃CH₂Ar), 1.90 (s, 3 H, *CH*₃CON), 2.40–4.10 (m, 30 H, *CH*₂), 7.10–8.40 (m, 8 H, Ar); IR (NaCl, film) 3060, 3020, 2980, 2920, 2860, 1635, 1460, 1440, 1410, 1280, 1200, 1110, 1030, 750, 675 cm⁻¹.

Model Compounds M_n . They were obtained after reduction of the diamides 10_n with diborane in THF according to the procedure described for compounds A_{nn} .

9-(6,9,17,20-Tetraoxa-3,12-diaza[8^{3,12}]docosyl)-10-ethylanthracene (M₂). From 2.3 g, (4.2 mmol) of diamide 10₂ and 10 mL of diborane solution (1 M in THF) was obtained pure M₂ after chromatography on neutral alumina (eluent benzene) as an orange oily product (2.0 g, 92%): ¹H NMR δ 1.10 (t, 3 H, CH₂CH₂N), 1.40 (t, 3 H, CH₂CH₂Ar), 2.50-3.00 (m, 12 H, NCH₂), 3.50-3.70 (m, 20 H, ArCH₂, OCH₂, 7.50-8.50 (m, 8 H, Ar); IR (NaCl, film) 3080, 2940, 2840, 1610, 1500, 1450, 1370, 1300, 1260, 1130, 1060, 930, 750 cm⁻¹; MS *m/z* 522 (calcd 522). Anal. Calcd for C₃₂H₄₆N₂O₄+H₂O: C, 71.11; H, 8.89; N, 5.18. Found: C, 71.80; H, 8.78; N, 4.92.

9-(7,10,18,21-Tetraoxa-4,13-diaza[8^{4,13}]tricosanyl)-10-ethylanthracene (M₃). From 3.1 g (5.5 mmol) of diamide 10₃ and 15 mL of diborane solution (1 M in THF) was obtained pure M₃ after chromatography on neutral alumina (eluent benzene) as an orange oily product (2.5 g, 88%): ¹H NMR δ 0.90 (t, 3 H, CH₃CH₂N), 1.40 (t, 3 H, CH₃CH₂CH, 1.80 (m, 2 H, ArCH₂CH₂CH₂N), 2.30–2.90 (m, 12 H, NCH₂), 3.50 (m, 20 H, ArCH₂, OCH₂), 7.20–8.50 (m, 8 H, Ar); IR (NaCl, film) 3080, 2950, 2840, 1620, 1450, 1350, 1260, 1130, 1060, 930, 750, 730, 700, 650 cm⁻¹; MS *m*/*z* 536 (calcd 536). Anal. Calcd for C₃₃H₄₈N₂O₄: C, 73.88; H, 8.96; N, 5.22. Found: C, 73.08; H, 8.98; N, 4.82.

N,*N'*-Diacetyl-[18]-N₂O₄ Macrocycle. To a stirred solution of [18]-N₂O₄ macrocycle (5 g, 19 mmol) and triethylamine (4 g, 41 mmol) in dried benzene (150 mL) was added dropwise acetyl chloride (3.2 g, 41 mmol) in benzene (30 mL). Following the workup used for \mathcal{B}_m the expected diamide was obtained as a white solid (6 g, 90%): mp 98 °C; ¹H NMR δ 2.25 (s, 6 H, CH₃CO), 3.75 (m, 24 H, "N₂O₄" ring); IR (KBr pellets) 3000–2850, 1630, 1480, 1450, 1420, 1350, 1100, 1030, 900 cm⁻¹; MS *m/z* 346 (caled 346). Anal. Caled for C₁₆H₃₀N₂O₆: C, 55.49; H, 8.67; N, 8.09; O, 27.75. Found: C, 55.53; H, 8.78; N, 8.04; O, 27.59.

N,**N**-**Diethyl**-[18]-N₂O₄ **Macrocycle.** According to the procedure described for compounds A_{nn} , the diethyl derivative was obtained after reduction of the diamide (2.5 g, 7 mmol) in THF (20 mL) with 15 mL of diborane solution (1 M in THF). After chromatography on neutral alumina (eluent benzene) a transparent oil was obtained; after standing, it gave a white solid (2.0 g, 87%): mp 48 °C; ¹H NMR δ 0.90 (t, 6 H, CH₃), 2.60 (m, 12 H, NCH₂), 3.40 (m, 16 H, OCH₂); IR (NaCl, film) 3000–2700, 1450, 1340, 1120, 1070, 750, 720 cm⁻¹; MS *m/z* 318 (calcd 318). Anal. Calcd for Cl₆H₃₄N₂O₄: C, 60.38; H, 10.69; N, 8.81; O, 20.13. Found: C, 60.20; H, 10.80; N, 9.13; O, 19.78.

Acknowledgment. La Région Aquitaine is thanked for partial support of the Centre d'Etudes de la Structure et d'Analyse des Molecules Organiques equipment. The CNRS and the University of Bordeaux I are gratefully acknowledged for financial assistance. We are indebted to Dr. H. Schneider (MPI für Biophysikalische Chemie, Göttingen, Germany) for helpful information concerning the coronand[2.2]. Acknowledgment is also made to the donors of the Petroleum Research Fund, administered by the American Chemical Society.